1.概念
ribbon是一款客户端负载均衡器,用于微服务之间的负载均衡。
首先,什么是客户端负载均衡?
如图,ribbon可以通过注册中心获取服务列表,然后自己执行自己的负载均衡策略来决定要访问哪个微服务,这就是客户端负载均衡,选择的主导权在客户端自己手里。
区别于服务端的负载均衡,客户端的负载均衡可以由客户端自己选择。
例如你去食堂吃饭,服务端的负载均衡就是食堂自动给你分配伙食,你没得选。而客户端的负载均衡就是进入食堂,你有一个菜谱,你可以按照菜谱自己选择要吃的伙食。
2.用一段伪代码来实现ribbon的客户端代理
通过重写RestTemplate 的doExecute方法,来完成客户端的负载均衡。这里的策略是随机一个。
@Slf4j
public class MyRestTemplate extends RestTemplate {
private DiscoveryClient discoveryClient;
public MyRestTemplate(DiscoveryClient discoveryClient) {
this.discoveryClient = discoveryClient;
}
protected <T> T doExecute(URI url, @Nullable HttpMethod method, @Nullab le RequestCallback requestCallback, @Nullable ResponseExtractor<T> responseExtractor) throws RestClientExce ption {
......
ClientHttpResponse response = null;
try {
//判断url的拦截路径,然后去redis(作为注册中心)获取地址随机选取一个
log.info("请求的url路径为:{}", url);
url = replaceUrl(url);
log.info("替换后的路径:{}", url);
ClientHttpRequest request = createRequest(url, method);
if (requestCallback != null) {
requestCallback.doWithRequest(request);
}
response = request.execute();
handleResponse(url, method, response);
return (responseExtractor != null ? responseExtractor.extractData(respo nse) : null);
......
}
/**
* 把服务实例名称替换为ip:端口 * @param url * @return
*/
private URI replaceUrl(URI url) {
//解析我们的微服务的名称
String sourceUrl = url.toString();
String[] httpUrl = sourceUrl.split("//");
int index = httpUrl[].replaceFirst("/", "@").indexOf("@");
String serviceName = httpUrl[].substring(, index);
//通过微服务的名称去nacos服务端获取 对应的实例列表
List<ServiceInstance> serviceInstanceList = discoveryClient.getInstances(serviceName);
if (serviceInstanceList.isEmpty()) {
throw new RuntimeException("没有可用的微服务实例列表:" + serviceName);
}
//采取随机的获取一个
Random random = new Random();
Integer randomIndex = random.nextInt(serviceInstanceList.size());
log.info("随机下标:{}", randomIndex);
String serviceIp = serviceInstanceList.get(randomIndex).getUri().toStri ng();
log.info("随机选举的服务IP:{}", serviceIp);
String targetSource = httpUrl[].replace(serviceName, serviceIp);
try {
return new URI(targetSource);
} catch (URISyntaxException e) {
e.printStackTrace();
}
return url;
}
}
3.通过Ribbon组件来实现负载均衡
第一步:依赖
<!-- 加入nocas‐client-->
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring‐cloud‐alibaba‐nacos‐discovery</artifactId>
</dependency>
<!-- 加入ribbon -->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring‐cloud‐starter‐netflix‐ribbon</artifactId>
</dependency>
第二步 配置RestTemplate
@LoadBalanced
@Bean
public RestTemplate restTemplate() {
return new RestTemplate();
}
这样就可以使用ribbon了。
4.源码解析
? LoadBalancerAutoConfiguration 这个类配置了ribbon对restTemplate的整合
@Configuration(proxyBeanMethods = false)
@ConditionalOnClass(RestTemplate.class)
@ConditionalOnBean(LoadBalancerClient.class)
@EnableConfigurationProperties(LoadBalancerRetryProperties.class)
public class LoadBalancerAutoConfiguration {
@LoadBalanced
@Autowired(required = false)
private List<RestTemplate> restTemplates = Collections.emptyList();
@Autowired(required = false)
private List<LoadBalancerRequestTransformer> transformers = Collections.emptyList();
......
}
4.1首先,这个类维护了一个RestTemplate的列表,并且通过RestTemplateCustomizer对这些RestTemplate添加一个拦截器;
// 遍历添加RestTemplateCustomizer
@Bean
public SmartInitializingSingleton loadBalancedRestTemplateInitializerDeprecated(
final ObjectProvider<List<RestTemplateCustomizer>> restTemplateCustomizers) {
return () -> restTemplateCustomizers.ifAvailable(customizers -> {
for (RestTemplate restTemplate : LoadBalancerAutoConfiguration.this.restTemplates) {
for (RestTemplateCustomizer customizer : customizers) {
customizer.customize(restTemplate);
}
}
});
}
@Configuration(proxyBeanMethods = false)
@ConditionalOnMissingClass("org.springframework.retry.support.RetryTemplate")
static class LoadBalancerInterceptorConfig {
// 拦截器注册bean
@Bean
public LoadBalancerInterceptor ribbonInterceptor(
LoadBalancerClient loadBalancerClient,
LoadBalancerRequestFactory requestFactory) {
return new LoadBalancerInterceptor(loadBalancerClient, requestFactory);
}
// 添加连接器
@Bean
@ConditionalOnMissingBean
public RestTemplateCustomizer restTemplateCustomizer(
final LoadBalancerInterceptor loadBalancerInterceptor) {
return restTemplate -> {
List<ClientHttpRequestInterceptor> list = new ArrayList<>(
restTemplate.getInterceptors());
list.add(loadBalancerInterceptor);
restTemplate.setInterceptors(list);
};
}
}
4.2其次,RestTemplateCustomizer 又通过LoadBalancerInterceptor 进行接口拦截,而拦截器的主要就是把serviceId取出来,再使用负载均衡器发起http请求。
public class LoadBalancerInterceptor implements ClientHttpRequestInterceptor {
private LoadBalancerClient loadBalancer;
private LoadBalancerRequestFactory requestFactory;
......
@Override
public ClientHttpResponse intercept(final HttpRequest request, final byte[] body,
final ClientHttpRequestExecution execution) throws IOException {
// url获取
final URI originalUri = request.getURI();
String serviceName = originalUri.getHost();
// 执行
return this.loadBalancer.execute(serviceName,
this.requestFactory.createRequest(request, body, execution));
}
}
4.3然后,在RibbonLoadBalancerClient类里面进行负载均衡的操作
public <T> T execute(String serviceId, LoadBalancerRequest<T> request, Object hint)
throws IOException {
// 获取负载均衡对象
ILoadBalancer loadBalancer = getLoadBalancer(serviceId);
// 获取服务
Server server = getServer(loadBalancer, hint);
if (server == null) {
throw new IllegalStateException("No instances available for " + serviceId);
}
RibbonServer ribbonServer = new RibbonServer(serviceId, server,
isSecure(server, serviceId),
serverIntrospector(serviceId).getMetadata(server));
// 执行回请求
return execute(serviceId, ribbonServer, request);
}
@Override
public <T> T execute(String serviceId, ServiceInstance serviceInstance,
LoadBalancerRequest<T> request) throws IOException {
......
try {
// 执行请求
T returnVal = request.apply(serviceInstance);
statsRecorder.recordStats(returnVal);
return returnVal;
......
return null;
}
4.4最后在AsyncLoadBalancerInterceptor对象里面的intercept方法进行http请求
public ListenableFuture<ClientHttpResponse> intercept(final HttpRequest request, final byte[] body, final AsyncClientHttpRequestExecution execution) throws IOException {
URI originalUri = request.getURI();
String serviceName = originalUri.getHost();
return (ListenableFuture)this.loadBalancer.execute(serviceName, new LoadBalancerRequest<ListenableFuture<ClientHttpResponse>>() {
public ListenableFuture<ClientHttpResponse> apply(final ServiceInstance instance) throws Exception {
HttpRequest serviceRequest = new ServiceRequestWrapper(request, instance, AsyncLoadBalancerInterceptor.this.loadBalancer);
return execution.executeAsync(serviceRequest, body);
}
});
}
4.5那么ribbon怎么获取服务呢?回到步骤4.3,这里通过getServer()方法调用ILoadBalancer这一接口的实现类来实现的
protected Server getServer(ILoadBalancer loadBalancer, Object hint) {
if (loadBalancer == null) {
return null;
}
//选择服务,没有就默认
return loadBalancer.chooseServer(hint != null ? hint : "default");
}
public interface ILoadBalancer {
// 初始化服务列表
public void addServers(List<Server> newServers);
// 从列表中选择一个服务
public Server chooseServer(Object key);
// 标记服务为down
public void markServerDown(Server server);
// 获取服务列表
public List<Server> getServerList(boolean availableOnly);
// 获取up和reachable的服务
public List<Server> getReachableServers();
//获取所有服务(reachable and unreachable)
public List<Server> getAllServers();
}
选择的最终在BaseLoadBalancer里面,默认选择的负载均衡策略为RoundRobinRule
private final static IRule DEFAULT_RULE = new RoundRobinRule();
protected IRule rule = DEFAULT_RULE;
// 没有自定义的rule就选默认的
public Server chooseServer(Object key) {
if (counter == null) {
counter = createCounter();
}
counter.increment();
if (rule == null) {
return null;
} else {
try {
return rule.choose(key);
} catch (Exception e) {
logger.warn("LoadBalancer [{}]: Error choosing server for key {}", name, key, e);
return null;
}
}
}
4.6 ribbon中已经有的负载均衡策略
①:RandomRule(随机选择一个Server)
②:RetryRule 对选定的负载均衡策略机上重试机制,在一个配置时间段内当选择Server不成功, 则一直尝试使用subRule的方式选择一个可用的server.
③:RoundRobinRule 轮询选择, 轮询index,选择index对应位置的Server
④:AvailabilityFilteringRule 过滤掉一直连接失败的被标记为circuit tripped的后端Server,并过滤掉那些高并发的后端 Server或者使用一个AvailabilityPredicate来包含过滤server的逻辑,其实就就是检查 status里记录的各个Server的运行状态
⑤:BestAvailableRule选择一个最小的并发请求的Server,逐个考察Server,如果Server被tripped了,则跳过。
⑥:WeightedResponseTimeRule 根据响应时间加权,响应时间越长,权重越小,被选中的可能性越低;
⑦:ZoneAvoidanceRule 复合判断Server所在Zone的性能和Server的可用性选择Server,在没有Zone的情况下类是 轮询。
5.总结
ribbon原理和代码不难,照着步骤多看看就懂了。
本文暂时没有评论,来添加一个吧(●'◡'●)